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Abstract. We introduce theextendedDuffin–Kemmer–Petiau (DKP) oscillator obtained by
combining two relativistic quantum oscillator models. In a study analogous to Kukulin, Loyola
and Moshinsky’s work on extended Dirac oscillators, we investigate whether this extended
version has oscillator shells controllably independent from the spin–orbit coupling. This extended
DKP oscillator is found to beexactlysolvable for natural parity states. We calculate and discuss
both the natural- and unnatural-parity eigenspectra of its spin-1 representation.

1. Introduction

The study of relativistic quantum harmonic oscillators has been of increasing interest in
recent years in investigations concerned, for instance, with their covariance and CPT
properties [1], group-theoretical properties [2], hidden supersymmetric nature [3], geometric
quantization and coherent state formulation [4], generalization to particles with arbitrary spin
[5], properties at the first-quantized level and various other issues [6].

Here we shall consider an extension of the recently proposed relativistic Duffin–
Kemmer–Petiau (DKP) oscillator [7]. This extension is constructed by a procedure
analogous to that developed by Kukulin, Loyola and Moshinsky for the extended Dirac
oscillator [8]. This procedure consists of combining a Lorentz tensor external field linear
in r together with a timelike Lorentz vector one quadratic inr.

In the non-relativistic limit, theS = 1 DKP oscillator presents, in addition to the usual
three-dimensional harmonic oscillations, a spin–orbit coupling whose strength is one half
that obtained from a Dirac oscillator with the same frequency [7]. Yet the energy level
splittings this spin–orbit component produces are rather large, of the order of magnitude of
the oscillator energy levels themselves.

In [8], Kukulin et al showed that, for the Dirac equation, their particular combination
of two oscillator models made it possible to generate an extended version of the Dirac
oscillator whose spin–orbit coupling is controllably independent from oscillator shells. The
interest in such an extension lies in the fact that the structure of hadron spectra is sensitive
to the strength of the spin–orbit coupling.

The focus of this paper is to investigate whether an analogous extension can be realized,
and exactly solved, in the case of a DKP relativistic quantum oscillator forS = 1 particles.
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2. The DKP oscillator

Before introducing itsextendedversion, consider the basic features of the DKP oscillator
[7]. For a free vector boson of massm, the relativistic DKP equation [9] is

(cβ · p+mc2)ψ = ih̄β0∂ψ

∂t
(2.1)

where the internal variablesβµ (µ = 0, 1, 2, 3) satisfy the commutation relation

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ. (2.2)

In the spin-1 representation,βµ are 10× 10 matrices while the dynamical stateψ is a
ten-component spinor.

For the Lorentz tensor external potential which we introduce with the non-minimal
substitution

p→ p− imωη0r (2.3)

whereω is the oscillator frequency andη0 = 2(β0)2− 1, the DKP equation for the system
is

[cβ · (p− imωη0r)+mc2]ψ = ih̄β0∂ψ

∂t
. (2.4)

In the spin-1 representation of equation (2.4), the dynamical stateψ is chosen as the
ten-component spinor

ψ(r) =


iϕ(r)
A(r)
B(r)
C(r)

 with A ≡
(
A1

A2

A3

)
B ≡

(
B1

B2

B3

)
C ≡

(
C1

C2

C3

)

(2.5)

so that, for stationary states, the equation of motion equation (2.4) decomposes into

mc2ϕ = icp− ·B
mc2A = EB − cp+ ∧C
mc2B = EA+ icp+ϕ

mc2C = −cp− ∧A

(2.6)

wherep± = p ± imωr. SinceA is the three-component spinor analogous to the Dirac
upper component, we seek the wave equation forA. It is straightforward to eliminateϕ,
B andC in favour ofA so that one gets

(E2−m2c4)A = [c2(p2+m2ω2r2)− 3h̄ωmc2− 2h̄ωmc2L · s]A

− 1

m2
p+{p− · [p+ ∧ (p− ∧A)]} (2.7)

whereL is the orbital angular momentum ands the 3×3 spin-1 operator. UsingE = ε+mc2

and the non-relativistic limitε � mc2, the fourth term in equation (2.7) becomes negligible,
since it is of the order of 1/m3, so that the wave equation forA can be written

εA '
[
p2

2m
+ 1

2
mω2r2− 3

2
h̄ω − h̄ωL · s

]
A (2.8)

which characterizes the usual harmonic oscillator in addition to a spin–orbit coupling, absent
for scalar DKP bosons, of strength−h̄ω. Note that the strength of this coupling is half the
one obtained from the Dirac oscillator [10].



An extended relativistic quantum oscillator 3869

Since the spin-1 representation of equation (2.4) leads to the usual three-dimensional
(3D) oscillator, in the non-relativistic limit, we refer to the system it describes as the DKP
oscillator.

3. The extended DKP oscillator

We now turn to the extended model in which the quadratic Lorentz vector piecem�2r2β0P
is included as an additional external field in equation (2.4), i.e.

[cβ · (p− imωη0r)+m�2r2β0P +mc2]ψ = ih̄β0∂ψ

∂t
. (3.1)

P is a projection operator which picks out the four upper components of the DKP spinor.
As will be shown below, the logic underlying this prescription lies in the fact that forω = 0
the non-relativistic limit of (3.1) yields a harmonic oscillator without spin–orbit coupling
(only a quadratic interaction term remains). Alternative prescriptions, such as including
�2r2 as a Lorentz scalar term for instance, would be inadequate. It can be simply shown
that in the non-relativistic limit they would yield the usual 3D oscillator potential in addition
to three types of tensor terms built up froms, r andp. This would violate the necessary
requirement that relativistic generalizations of quantum oscillators should recover the usual
3D oscillator in the non-relativistic limit.

For arbitrary ω and � frequencies, using the same analytical procedure as above
decomposes the equation of motion (3.1) into

mc2ϕ = icp− ·B
mc2A = EB − cp+ ∧C
mc2B = (E −m�2r2)A+ icp+ϕ

mc2C = −cp− ∧A.

(3.2)

A lengthy but otherwise straightforward calculation of the relevant wave equation forA
leads to

(E2−m2c4)A =
[
c2

(
p2+m2

(
ω2+ E

mc2
�2

)
r2

)
− 3h̄ωmc2− 2h̄ωmc2L · s

]
A

− 1

m2
p+{p− · [p+ ∧ (p− ∧A)]} (3.3)

which, in the non-relativistic limit, reduces to

εA '
[
p2

2m
+ 1

2
m(ω2+�2)r2− 3

2
h̄ω − h̄ωL · s

]
A. (3.4)

This designates the usual harmonic oscillator (with frequency(ω2 + (E/mc2)�2)1/2)
combined with a ¯hω strong spin–orbit coupling. In this extended oscillator model, unlike
the simple DKP oscillator in section 2, the spin–orbit splitting can controllably be decoupled
from the oscillator shells. In theω = 0 limit, the harmonic oscillator has frequency� and
there is no spin–orbit coupling.

4. Solution of the extended DKP oscillator problem

We now seek to calculate the complete solution to the extended DKP oscillator. The total
angular momentumJ can be shown to be conserved in which case the general eigenfunction
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one can use takes the form [11]

ψJM(r) = 1

r


iφnJ (r)YJM(�)∑
L FnJL(r)Y

M
JL1(�)∑

L GnJL(r)Y
M
JL1(�)∑

L HnJL(r)Y
M
JL1(�)

 . (4.1)

PuttingψJM into equation (3.1) results in ten coupled radial differential equations which can
be decoupled into two sets associated with(−1)J and(−1)J+1 parities. We call the(−1)J

solutions natural-parity (or magnetic-like) states while we refer to the(−1)J+1 solutions as
unnatural-parity (or electric-like) states. With the notation

RnJJ (r) = R0 RnJJ±1(r) = R±1 R ≡ F,G,H (4.2)

and the definitionαJ = ((J + 1)/(2J + 1))1/2 andζJ = (J/(2J + 1))1/2, the set associated
with (−1)J parity is

(E −m�2r2)F0 = mc2G0 (4.3a)

h̄c

(
d

dr
− J + 1

r
+ mωr

h̄

)
F0 = − 1

ζJ
mc2H1 (4.3b)

h̄c

(
d

dr
+ J
r
+ mωr

h̄

)
F0 = − 1

αJ
mc2H−1 (4.3c)

−ζJ
(

d

dr
+ J + 1

r
− mωr

h̄

)
H1− αJ

(
d

dr
− J
r
− mωr

h̄

)
H−1 = 1

h̄c

(
mc2F0− EG0

)
.

(4.3d)

For unnatural-parity states, the radial differential equations are coupled in the following
way:

h̄c

(
d

dr
− J + 1

r
− mωr

h̄

)
H0 = − 1

ζJ
(mc2F1− EG1) (4.4a)

h̄c

(
d

dr
+ J
r
− mωr

h̄

)
H0 = − 1

αJ
(mc2F−1− EG−1) (4.4b)

−ζJ
(

d

dr
+ J + 1

r
+ mωr

h̄

)
F1− αJ

(
d

dr
− J
r
+ mωr

h̄

)
F−1 = 1

h̄c
mc2H0 (4.4c)

h̄c

(
d

dr
− J + 1

r
− mωr

h̄

)
φ = 1

αJ
((E −m�2r2)F1−mc2G1) (4.4d)

h̄c

(
d

dr
+ J
r
− mωr

h̄

)
φ = − 1

ζJ
((E −m�2r2)F−1−mc2G−1) (4.4e)

−αJ
(

d

dr
+ J + 1

r
+ mωr

h̄

)
G1+ ζJ

(
d

dr
− J
r
+ mωr

h̄

)
G−1 = 1

h̄c
mc2φ. (4.4f)

The nature of the coupling between the different radial equations reflects the way in which
the tensor and the vector external fields mix the components of the DKP spinor between
themselves.

4.1. Natural-parity states

The exact solution for the magnetic-like states is obtained by eliminatingG0 andH±1 in
equations (4.3), i.e.(

d2

dr2
+ (E

2−m2c4)

(h̄c)2
+ mω

h̄
− m

2ω′2r2

h̄2 − J (J + 1)

r2

)
F0(r) = 0 (4.5)
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whereω′2 = ω2 + (E/mc2)�2, so that the associated eigenvalues can simply be shown to
obey the eigenvalue equation

1

2mc2
(E2

N,J −m2c4) =
(
N + 3

2

)
h̄

(
ω2+ EN,J

mc2
�2

)1/2

− 1

2
h̄ω. (4.6)

This is a fourth-order equation inEN,J ; N is the principal quantum numberN = 2n + J
(n is the radial quantum number).

In the limit where� ' 0, as would be expected, the eigenenergy reduces to that of the
basic DKP oscillator [7], that is

1

2mc2
(E2

N,J −m2c4) = (N + 1)h̄ω. (4.7)

For very lowω and forω � � frequencies, the eigenenergy equation yields a fourth-degree
equation forE:

1

2mc2
(E2

N,J −m2c4) =
(
N + 3

2

)
h̄�

(
EN,J

mc2

)1/2

− 1

2
h̄ω. (4.8)

If we now consider the non-relativistic limit of equation (4.6), the oscillator energy
levels turn out to be

εN,J '
((
N + 3

2

)
h̄(ω2+�2)1/2− 1

2
h̄ω

)
×
(

1+ 1

2mc2

(
N + 3

2

)
h̄(ω2+�2)1/2

�2

�2+ ω2

)
. (4.9)

The exactF0 eigenfunctions satisfying equation (4.5) take a form similar to that given
in equation (32) of [7] and the radial componentsG0 andH±1 can be simply deduced from
equations (4.3a)–(4.3c).

4.2. Unnatural-parity states

Now for the eigenspectrum of electric-like states, the relevant coupled radial differential
equations one needs to solve are those in equations (4.4). An analytic solution does exist
for J = 0 states. In this case it is possible to transform equations (4.4) into

d2

dr2
F−1(r)+

(
(E2−m2c4)

(h̄c)2
+ mω

h̄
− m

2ω′2r2

h̄2

)
F−1(r) = 0

H0(r) = − 1

mc2

(
d

dr
+mωr

)
F−1(r)

G−1(r) = 1

mc2
(E −m�2r2)F−1(r) (4.10a)

and

d2

dr2
G1(r)+

(
(E2−m2c4)

(h̄c)2
− mω

h̄
− m

2ω′2r2

h̄2 − 2

r2

)
G1(r) = 0

φ(r) = − 1

mc2

(
d

dr
+ 1

r
+mωr

)
G1(r)

F1(r) = E

mc2
G1(r). (4.10b)
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The {H0, F−1,G−1} set of radial wavefunctions comes out as decoupled from the set
{φ, F1,G1}. ClearlyF−1 andG1 obey harmonic-oscillator-type radial equations for which
there are two sets of 0− oscillator shells.

The first set of 0− states, those for which{φ, F1,G1} are identically zero, comprises
oscillator shells which have the same energies as the natural-parity 0+ levels sinceF−1

obeys the same eigenequation asF0 with J = 0 (see equation (4.5)). In the non-relativistic
limit, the binding energies are described by

εN,0− '
((
N + 3

2

)
h̄(ω2+�2)1/2− 1

2
h̄ω

)
×
(

1+ 1

2mc2

(
N + 3

2

)
h̄(ω2+�2)1/2

�2

�2+ ω2

)
. (4.11a)

The corresponding radial eigenfunctionF−1 can be simply expressed in terms of associated
Laguerre polynomials (see equation (32) of [7]) whileG−1 andH0 can be trivially specified
using equation (4.10a).

The other class of 0− oscillator levels—those whose radial eigencomponents
{H0, F−1,G−1} vanish—coincide with the magnetic-like 1+ oscillator shells becauseG1

satisfies the same oscillator eigenequation asF0 with J = 1 and h̄ω lower zero-point
energy. In the non-relativistic limit, the 0− eigenenergies are

εN,0− '
((
N + 3

2

)
h̄(ω2+�2)1/2+ 1

2
h̄ω

)
×
(

1+ 1

2mc2

(
N + 3

2

)
h̄(ω2+�2)1/2

�2

�2+ ω2

)
. (4.11b)

The radial eigenfunctions{G1, F1, φ} can be simply obtained as above.
In the case of unnatural-parity states withJ > 0, there is no obvious non-trivial particular

solution to equations (4.4). These equations can be transformed into (¯h = c = 1)

d2φ

dr2
+ Pφ(r)dφ

dr
+
(
Qφ(r)− J (J + 1)

r2

)
φ = 4H0(r)H0 (4.12a)

d2H0

dr2
+ PH0(r)

dH0

dr
+
(
QH0(r)−

J (J + 1)

r2

)
H0 = 4φφ (4.12b)

with

Pφ = −0
′

0
Qφ = E2−m2−m2ω′2r2− 3mω +

(
1

r
+mωr

)
0′

0
(4.12c)

PH0(r) = −
0′

0
QH0(r) = E2−m2−m2ω′2r2−mω +mωr 0

′

0
(4.12d)

and

4H0 =
√
J (J + 1)

(
3′0
mr
+ 2(E − V )ω

)
4φ =

√
J (J + 1)

(
− E0

′

mr0
+ 2Eω

)
(4.12e)

while

0(r) = (E2−m2− EV ) 3(r) = 1

0
(E − V ) V = m�2r2. (4.12f)
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The prime on0 or 3 designates a derivative with respect tor. Once equations (4.11a) and
(4.11b) are solved, the remaining unnatural-parity radial wavefunctions are simply given by(

F1

G1

)
= 1

0

(
αJE ζJm

αJm ζJ (E − V )
)(

d

dr
− J + 1

r
−mωr

)(
φ

H0

)
(4.13a)(

F−1

G−1

)
= 1

0

(−ζJE αJm

−ζJm αJ (E − V )
)(

d

dr
+ J
r
−mωr

)(
φ

H0

)
. (4.13b)

In this new form, we have reduced the problem of solving equations (4.4a)–(4.4f ) to that
of solving a pair of coupled second-order differential equations which seem to represent
two coupled3D harmonic oscillators, albeit with a rather complicated coupling.

For the frequency� = 0, as required, these equations reduce to the unnatural-parity
state radial equations (33a)–(33d) of the basic DKP oscillator [7]. On the other hand,
for ω = 0, the radial equations associated only with the Lorentz timelike vector oscillator
interaction have structural similarities to those found for electric states of a DKP boson in a
Coulomb field [11], or of the Breit wave equation for two equal-mass fermions interacting
via a Coulomb potential [12]. These equations are known not to have analytical solutions.

Disregarding the coupling terms on the right-hand sides of equations (4.12a) and
(4.12b), both the homogeneous equations inφ andH0 have three regular singularities (at
r = 0,−r0, r0 with r0 = ((E2 − m2)/Em�2)1/2) and an irregular singularity at infinity (a
fourth-order pole).

These equations cannot be transformed into confluent hypergeometric forms, which
involve only one regular and one irregular singularity, while non-closed-form solutions in
terms of power series expansions valid in the ranges between the different singularities
would be very difficult to obtain (fourth-order coupled recurrence relations). Approximate
and asymptotic solutions shall not be considered in this paper.

5. Conclusion

We have constructed an extended DKP oscillator by combining a Lorentz tensor external
field linear inr with a timelike Lorentz vector potential quadratic in the separation.

In the non-relativistic limit, the DKP equation of motion leads to the usual harmonic
oscillator with a spin–orbit coupling of the Thomas form. However, unlike the basic DKP
oscillator case, here the oscillator shells are controllably independent from the spin–orbit
splittings since they are specified by different frequency parameters.

We have shown that this relativistic oscillator is exactly solvable for magnetic-like
states. In the case of unnatural-parity states, only 0− states have analytic eigensolutions.
For higher angular momentum states, although the eigenproblem can be reduced to that
of two non-trivially coupled 3D harmonic oscillators, it does not seem to admit to known
analytic solutions.
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